Roll-to-roll production of 30-inch graphene films for transparent electrodes

Sukang Bae1†, Hyeongkeun Kim1,3†, Youngbin Lee1, Xiangfan Xu5, Jae-Sung Park7, Yi Zheng5, Jayakumar Balakrishnan5, Tian Lei1, Hye Ri Kim2, Young Il Song6, Young-Jin Kim1,3, Kwang S. Kim7, Barbaros Özyilmaz5, Jong-Hyun Ahn1,4*, Byung Hee Hong1,2* and Sumio Iijima1,8

The outstanding electrical1, mechanical2–3 and chemical4,5 properties of graphene make it attractive for applications in flexible electronics6–8. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as \( \sim 125 \ \Omega \cdot \square^{-1} \) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as \( \sim 30 \ \Omega \cdot \square^{-1} \) at \( \sim 90\% \) transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

Conventional transparent electrodes make use of indium tin oxide (ITO) and are commonly used in solar cells, touch sensors and flat panel displays. It has a sheet resistance of less than 100 \( \Omega \cdot \square^{-1} \), optical transparency of \( \sim 90\% \), and unlimited scalability. In contrast, the best reported sheet resistance of graphene grown on nickel substrates by chemical vapour deposition (CVD) is \( \sim 280 \ \Omega \cdot \square^{-1} \) (refs 6,9,10), on the centimetre scale. Also, the CVD methods based on thermally deposited nickel thin films inevitably require a rigid substrate that can withstand temperatures close to \( \sim 1,000\ \degree C \) and an etching process to remove the metal catalyst layers. These are therefore the main obstacles to the direct use of graphene on as-grown substrates6,9,10. Finding a way in which to transfer graphene films onto a foreign substrate is essential11,12.

Recently, Li and colleagues discovered and demonstrated a CVD method that used centimetre-scale copper substrates1,5, opening a new route to large-scale production of high-quality graphene films for practical applications. Graphene growth is therefore no longer limited to the use of rigid substrates; instead, large flexible copper foils may be used in the form of a roll-type substrate fitting inside a tubular furnace to maximize the scale and homogeneity of the produced graphene films. The flexibility of the graphene and copper foils further allows efficient etching and transfer processes that use a cost- and time-effective roll-to-roll production method.

There are three essential steps in the roll-to-roll transfer13–16 (Fig. 1a): (i) adhesion of polymer supports to the graphene on the copper foil; (ii) etching of the copper layers; and (iii) release of the graphene layers and transfer onto a target substrate. In the adhesion step, the graphene film, grown on a copper foil, is attached to a thin polymer film coated with an adhesive layer by passing between two rollers. In the subsequent step, the copper layers are removed by electrochemical reaction with aqueous \( 0.1 \) M ammonium persulphate solution (\( \text{NH}_4\text{S}_2\text{O}_8 \)) (ref. 17). Finally, the graphene films are transferred from the polymer support onto a target substrate by removing the adhesive force holding the graphene films. When using thermal release tapes11,12, the graphene films are detached from the tapes and released to counter-substrates by thermal treatment (Fig. 1). The third step is not necessary when the target substrate is directly attached to the copper foil in the first step by permanent adhesion.

Figure 2a–c presents photographs of the roll-based synthesis and transfer process. An 8-inch-wide tubular quartz reactor (Fig. 2a) is used in the CVD system, allowing a monolayer graphene film to be synthesized on a roll of copper foil with dimensions as large as 30 inches in the diagonal direction (Fig. 2c). A temperature gradient usually exists that depends on the radial position inside the tubular reactor. In our preliminary work, this sometimes resulted in inhomogeneous growth of the graphene on the copper foils. To solve this problem, a \( \sim 7.5\)-inch quartz tube wrapped with a copper foil was inserted and suspended inside the 8-inch quartz tube. In this way, the radial inhomogeneity in the reaction temperature could be minimized (Supplementary Fig. S1). In the first step of synthesis, the roll of copper foil is inserted into a tubular quartz tube and then heated to 1,000\( \degree C \) with flowing 8 s.c.c.m. \( \text{H}_2 \) at 90 mtorr. After reaching 1,000\( \degree C \), the sample is annealed for 30 min without changing the flow rate or pressure. The copper foils are heat-treated to increase the grain size from a few micrometres to \( \sim 100\) \( \mu \)m, as we have found that the copper foils with larger grain size yield higher-quality graphene films, as suggested by Li and colleagues13 (Supplementary Fig. S3). The gas mixture of \( \text{CH}_4 \) and \( \text{H}_2 \) is then flowed at 460 mtorr with rates of 24 and 8 s.c.c.m. for 30 min, respectively. Finally, the sample is rapidly cooled to room temperature (\( \sim 10\) \( \degree C \) s\(^{-1} \)) with flowing \( \text{H}_2 \) under a pressure of 90 mtorr.

After growth, the graphene film grown on copper foil is attached to a thermal release tape (Jinsung Chemical Co. and Nitto Denko...
Co.) by applying soft pressure (∼0.2 MPa) between two rollers. After etching the copper foil in a plastic bath filled with copper etchant, the transferred graphene film on the tape is rinsed with deionized water to remove residual etchant, and is then ready to be transferred to any kind of flat or curved surface on demand. The graphene film on the thermal release tape is inserted between the rollers together with a target substrate and exposed to mild heat (∼90–120 °C), achieving a transfer rate of ∼150–200 mm min⁻¹ and resulting in the transfer of the graphene films from the tape to the target substrate (Fig. 2b). By repeating these steps on the same substrate, multilayered graphene films can be prepared that exhibit enhanced electrical and optical properties, as demonstrated by Li and colleagues using wet-transfer methods at the centimetre scale¹⁹. Figure 2c shows the 30-inch multilayer graphene film transferred to a roll of 188-μm-thick polyethylene terephthalate (PET) substrate. Figure 2d shows a screen-printing process used to fabricate four-wire touch-screen panels¹⁸ based on graphene/PET transparent conducting films.

---

Figure 1 | Schematic of the roll-based production of graphene films grown on a copper foil. The process includes adhesion of polymer supports, copper etching (rinsing) and dry transfer-printing on a target substrate. A wet-chemical doping can be carried out using a set-up similar to that used for etching.

Figure 2 | Photographs of the roll-based production of graphene films. a, Copper foil wrapping around a 7.5-inch quartz tube to be inserted into an 8-inch quartz reactor. The lower image shows the stage in which the copper foil reacts with CH₄ and H₂ gases at high temperatures. b, Roll-to-roll transfer of graphene films from a thermal release tape to a PET film at 120 °C. c, A transparent ultralarge-area graphene film transferred on a 35-inch PET sheet. d, Screen printing process of silver paste electrodes on graphene/PET film. The inset shows 3.1-inch graphene/PET panels patterned with silver electrodes before assembly. e, An assembled graphene/PET touch panel showing outstanding flexibility. f, A graphene-based touch-screen panel connected to a computer with control software. For a movie of its operation see Supplementary Information.
Figure 3 | Optical characterizations of the graphene films prepared using layer-by-layer transfer on SiO_2/silicon and PET substrates. a, Raman spectra of graphene films with different numbers of stacked layers. The left inset shows a photograph of transferred graphene layers on a 4-inch SiO_2(300 nm)/silicon wafer. The right inset is a typical optical microscope image of the monolayer graphene, showing ~95% monolayer coverage. A PMMA-assisted transfer method is used for this sample. b, UV–vis spectra of roll-to-roll layer-by-layer transferred graphene films on quartz substrates. The inset shows the UV spectra of graphene films with and without HNO_3 doping. The right inset shows optical images for the corresponding number of transferred layers (1 × 1 cm^2). The contrast is enhanced for clarity. c, Raman spectra of HNO_3-doped graphene films, showing ~18 cm^{-1} blueshift both for G and 2D peaks. D-band peaks are not observed before or after doping, indicating that HNO_3 treatment is not destructive to the chemical bonds of graphene. d, XPS peaks of monolayer graphene films transferred on SiO_2/Si substrates, showing typical redshift and broadening of carbon 1s peaks (Cls) caused by p-doping. The inset shows work-function changes (ΔΦ) with respect to doping time (lower x-axis) and number of stacked layers (upper x-axis), measure by UPS.

The graphene films seem to be predominantly composed of monolayers when analysed using Raman spectra (Fig. 3a). However, atomic force microscopy (AFM) and transmission electron microscope (TEM) images often show bilayer and multilayer islands (Supplementary Figs S5,S6). As the graphene layers are transferred one after another, the intensities of the G- and 2D-band peaks increase together, but their ratios do not change significantly. This is because the hexagonal lattices of the upper and lower layers are randomly oriented, unlike in graphite, so the original properties of each monolayer remain unchanged, even after stacking into multilayers; this is clearly different from the case of multilayer graphene exfoliated from graphite crystals. The randomly stacked layers behave independently without significant change in the electronic band structures, and the overall conductivity of the graphene films appears to be proportional to the number of stacked layers. The optical transmittance is usually reduced by ~2.2–2.3% for an additional transfer, implying that the average thickness is approximately a monolayer (Fig. 3b).

The unique electronic band structure of graphene allows modulation of the charge carrier concentrations in dependence on an electric field induced by gate bias or chemical doping, resulting in enhancement of sheet resistance. We tried various types of chemical doping methods, and found that nitric acid (HNO_3) is very effective for p-doping of graphene films (Supplementary Fig. S10). Figure 3c shows Raman spectra of the graphene films before and after doping with 63 wt% HNO_3 for 5 min. The large peak shift (Δν = 18 cm^{-1}) indicates that the graphene film is strongly p-doped. The shifted G peak is often split near the randomly stacked bilayer islands, as shown in Fig. 3c. We hypothesize that the lower graphene layer, which is screened by top layers, experiences a reduced doping effect, leading to G-band splitting. In X-ray photoelectron spectra (XPS), the Cls peaks corresponding to sp^2 and sp^3 hybridized states are shifted to lower energy, similar to the case for p-doped carbon nanotubes. However, multilayer stacking results in blueshifted Cls peaks. We suppose that weak chemical bonding such as the π–π stacking interaction causes descreening of nucleus charges, leading to an overall increase in core electron binding energies. We also find that the work functions of graphene films as estimated by UV photoelectron spectroscopy (UPS) are blueshifted by ~130 meV with increasing doping time.
Figure 4 | Electrical characterizations of layer-by-layer transferred and HNO₃-doped graphene films. a. Sheet resistances of transferred graphene films using a roll-to-roll (R2R) dry-transfer method combined with thermal release tapes and a PMMA-assisted wet-transfer method. b. Comparison of sheet resistance from this research and transmission plots taken from other references. The dashed arrows indicate the expected sheet resistances at lower transmittance. The scheme is borrowed from ref. 19. c. Electrical properties of a monolayer graphene Hall bar device in vacuum. Four-probe resistivity (left bottom inset) is measured as a function of gate voltage in the monolayer graphene Hall bar shown in the right inset at room temperature (black curve) and $T = 6$ K (red curve). The QHE effect at $T = 6$ K and $B = 9$ T is measured in the same device. The longitudinal resistivity $\rho_{xx}$ and Hall conductivity $\sigma_{xy}$ are plotted as a function of gate voltage. The sequence of the first three half-integer plateaus corresponding to $\nu = 2, 6$ and 10, typical for single-layer graphene, are clearly seen. The Hall effect mobility of this device is $\mu_{\text{Hall}} = 7,350 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ at $T = 6$ K ($\sim 5,100 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ at 295 K). Scale bar (inset), 3 µm. d. Electromechanical properties of graphene-based touch-screen devices compared with ITO/PET electrodes under tensile strain. The inset shows the resistance change with compressive and tensile strain applied to the upper and lower graphene/PET panels, respectively.

The multiple stacking also changes the work functions (Fig. 3d, inset; see also Supplementary Fig. S7 and Table S1), which could be very important in controlling the efficiency of photovoltaic or light-emitting devices based on graphene transparent electrodes.

The electrical properties of graphene films formed using layer-by-layer stacking methods were also investigated. Usually, the sheet resistance of graphene film with 97.4% transmittance is as low as $\sim 125 \Omega \square^{-1}$ (Fig. 4a) when it is transferred by a soluble polymer support such as polymethyl methacrylate (PMMA). The transferrable size achievable using wet-transfer methods is limited to less than a few inches of wafer because of the weak mechanical strength of spin-coated PMMA layers. However, the scale of roll-to-roll dry transfer assisted by thermal release tape is in principle unlimited. In the process of roll-to-roll dry transfer, the first layer sometimes shows approximately two to three times larger sheet resistance than that of the PMMA-assisted wet-transfer method. As the number of layers increases, the resistance drops faster compared to the wet-transfer method (Fig. 4a). We postulate that the adhesion of the first layer with the substrate is not strong enough for complete separation of the graphene films from the thermal release tapes (Supplementary Fig. S4). As a result, there can be mechanical damage on the graphene films, leading to an increase in the overall sheet resistance. Because additional layers are not directly affected by the adhesion with the substrate surface, the sheet resistance of multilayers prepared by the roll-to-roll method does not differ much from that for the wet-transfer case. The p-doping with HNO₃ clearly enhances the electrical properties of graphene films, and is more effective in roll-to-roll processes. The sheet resistance of the p-doped four-layer graphene film with ~90% optical transmittance is as low as $\sim 30 \Omega \square^{-1}$, which is superior to common transparent electrodes such as ITO and carbon-nanotube films (Fig. 4b).

Standard electron-beam lithography has been used to fabricate graphene Hall bars on conventional 300-nm SiO₂/Si substrates (Fig. 4c). The left inset of Fig. 4c shows the four-terminal resistance of such samples as a function of backgate voltage ($V_{bg}$) at both room temperature (in black) and at a low temperature ($T = 6$ K) and zero magnetic field. We observe the graphene specific gate bias dependence of the resistance with a sharp Dirac peak and an effective Hall mobility of $7,350 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ at low temperatures. This allows the observation of the quantum Hall effect (QHE) at 6 K in a magnetic field of $B = 9$ T (Fig. 4c, right). The fingerprint of the quantum Hall effect (QHE) at 6 K in a magnetic field of $B = 9$ T (Fig. 4c, right). The fingerprint of the single-layer graphene, the half-integer quantum Hall effect, is observed with plateaus at filling factors of $\nu = 2, 6$ and 10 at $R_{xy} = \frac{\nu}{2}$, $\frac{\nu}{2}$ and $\frac{\nu}{2} (h/2e^2)$, respectively. Although the sequence of
Unlike ITO-based touch panels, which easily break under touch-screen panels were tested (Fig. 4d; Supplementary Fig. S2). In summary, we have developed and demonstrated the roll-to-roll production of graphene on ultralarge copper substrates. The multiple transfer and simple chemical doping of graphene films considerably enhances its electrical and optical properties. Given the scalability and processability of roll-to-roll and CVD methods and the flexibility and conductivity of graphene films, we anticipate that the commercial production of large-scale transparent electrodes, replacing ITO, will be realized in the near future.

Received 11 March 2010; accepted 28 May 2010; published online 20 June 2010; corrected online 25 June 2010

References

Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2009-0081966, 2009-0082608, 2009-0083540, 2009-0090017, World Class University R33-2008-000-11014-0, National Honor Scientist Program), the Research Centre of Breakthrough Technology Program through the Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Ministry of Knowledge Economy (2009-302100130-011-1), Singapore National Research Foundation (NRF grants R-255-000-114-111), and R. A. University (Korea). The authors thank R. Ruoff (University of Texas at Austin) and P. Kim (Columbia University) for helpful comments, W.S. Lim, K.D. Kim and Y.D. Kim (SSKU) for assistance in XPS analysis, and Samkung Well Tech Co. for assistance with the touch-panel fabrication.

Author contributions
B.H.H. planned and supervised the project, with assistance in supervision from J.H.A. Y.K.J., B.O. and S.I. provided advice for the project. B.H.H., S.B. and H.K. conceived and carried out the experiment. B.H.H., J.H.A. and B.O. analysed the data and wrote the manuscript. X.X., J.B., Y.Z. and B.O. fabricated the QHE devices, and carried out the experiments. Y.L. and Y.I.S. helped with the fabrication of touch-screen panels and electrical/mechanical analysis. J.S.P., H.R.K. and T.L. helped with the doping experiment.

Additional information
The authors declare no competing financial interests. Supplementary information accompanies this paper at www.nature.com/naturenanotechnology. Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/. Correspondence and requests for materials should be addressed to B.H.H. and J.H.A.
Roll-to-roll production of 30-inch graphene films for transparent electrodes

Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, Barbaros Özyilmaz, Jong-Hyun Ahn, Byung Hee Hong and Sumio Iijima


In the PDF version of this Letter originally published online, the authors were listed incorrectly. This error has now been corrected.
Roll-to-roll production of 30-inch graphene films
for transparent electrodes

Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xianfang Xu, Jae-Sung Park, Yi Zheng,
Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S.
Kim, Barbaros Özyilmaz, Jong-Hyun Ahn, Byung Hee Hong & Sumio Iijima
A. Homogeneity analysis of a large-scale graphene film

Fig. S1. Distribution of sheet resistances tested on the 300 pieces of 1x1 inch² monolayer graphene/PET films. The inset shows the corresponding spatial distribution on a 20x15 inch² graphene/PET film.

B. Strain analysis of graphene electrodes

Fig S2. Log-scaled $\Delta R/R$ vs. strain plot for a graphene electrode used in touch screen panel devices. The parameters and equations from Ref. S1 are used to calculate the strain. Note that we can simply use $F = -1$ in the case of ultrathin film on a thick substrate.

C. Enlarged grain sizes of Cu foil after annealing/growth

[Image of optical microscope images of Cu foils before and after graphene growth at 1,000°C. The cracks on foils usually form at grain boundaries. Optical images of polished Cu foils before and after annealing at 1,000°C, followed by brief acid treatment. The grain boundaries are etched faster than single crystalline surfaces, resulting in the formation line patterns on the polished Cu surface.]

**Fig. S3.** Grain size analyses of Cu foils before and after annealing/growth. (A) Optical microscope images of Cu foils before and after graphene growth at 1,000°C. The cracks on foils usually form at grain boundaries. (B) Optical images of polished Cu foils before and after annealing at 1,000°C, followed by brief acid treatment. The grain boundaries are etched faster than single crystalline surfaces, resulting in the formation line patterns on the polished Cu surface.

D. SEM images of transferred graphene films

[Image of SEM images of 1–3-layer graphene films transferred on a PET by a roll-to-roll method. The first transferred graphene layer shows adhesive residues, while the additional transfers look very clean. We supposed that the adhesion force between graphene and PET competes with the force between graphene and thermal release tapes, leaving some adhesive residues and defects. In the case of the second/third transfer, the adhesive forces of thermal release tapes look much smaller than graphene-graphene adhesion, and therefore, almost complete transfer can be made for additional transfers.]

**Fig. S4.** SEM images of 1–3-layer graphene films transferred on a PET by a roll-to-roll method. The first transferred graphene layer shows adhesive residues, while the additional transfers look very clean. We supposed that the adhesion force between graphene and PET competes with the force between graphene and thermal release tapes, leaving some adhesive residues and defects. In the case of the second/third transfer, the adhesive forces of thermal release tapes look much smaller than graphene-graphene adhesion, and therefore, almost complete transfer can be made for additional transfers.
E. AFM analysis of graphene films

![AFM Image](image)

**Fig. S5.** A contact-mode AFM image of the graphene film transferred on a PET film. A few nm high ripples are usually formed due to the different thermal expansion of Cu and graphene, and the cracks are formed during transfer process. The height profile (red solid line) measured along the dashed red line indicates the thicknesses of mono- and bi-layers approximately.

F. TEM images of as-grown graphene films

![TEM Images](image)

**Fig. S6.** High-resolution TEM images showing the folded edges of as-grown graphene films with different number of layers.

G. Ultraviolet photoelectron spectroscopy (UPS) analysis of graphene films

**Table S1.** Work functions ($eV$) of multiple transferred graphene films measured by UPS.

<table>
<thead>
<tr>
<th>No. transfer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>before HNO$_3$ doping</td>
<td>4.272</td>
<td>4.296</td>
<td>4.315</td>
<td>4.401</td>
</tr>
<tr>
<td>after HNO$_3$ doping</td>
<td>4.414</td>
<td>4.462</td>
<td>4.476</td>
<td>4.489</td>
</tr>
</tbody>
</table>

*The work functions of single-layer and bilayer graphene measured by scanning Kelvin probe microscopy (SKPM) are 4.57 eV and 4.69 eV respectively (Ref. Y. Yu et al. Nano Lett. 9, 3430 (2009)).
**Fig. S7.** UPS spectra of HNO₃-doped graphene films with different number of stacked layers. The binding energy increases with the number of stacked graphene layers.

**H. XPS spectra of transferred 2-layer graphene films**

**Fig S8.** XPS spectra of 2-monolayer graphene films transferred on SiO₂ substrates. The black and red lines denote the XPS spectra before and after HNO₃ doping, respectively. The higher energy C₁s peaks related to carbon-oxygen bonds are often observed in CVD-grown graphene samples, which is probably due to oxygen and amorphous carbon contamination inside the growth chamber.
I. Origin of low sheet resistance

Fig S9. Sheet resistance vs. doping with different charge carrier mobility. The sheet resistance is calculated by $\rho = 1/\sigma = 1/ne\mu$. During the etching process, the graphene can be $p$-doped by etchants such as ammonium persulfate or iron chloride. These etchants are usually strong oxidizing agents. Therefore, the electrons can be withdrawn from graphene during the redox process, which is supposed to be the reason for the low sheet resistance of as-prepared graphene films. This can be evidenced by Dirac points showing up around $V_C \approx -60\,\text{V}$ in an ambient condition, implying the doping density ($n$) is $\approx 4.26 \times 10^{12}\,\text{cm}^{-2}$ before HNO$_3$ doping ($E_D \approx -0.265\,\text{eV}$). The Fermi energy level shift measured by UPS is $\approx 0.130\,\text{V}$ after HNO$_3$ doping (Fig 3d, inset), and then the overall deduced doping level considering both etching and HNO$_3$ doping is calculated to be $\approx 9.43 \times 10^{12}\,\text{cm}^{-2}$ ($E_D \approx -0.395\,\text{eV}$).

J. Sheet resistance enhancement by various wet chemical $p$-dopants

Fig S10. Decrease of sheet resistance vs. various wet doping agent. The large-area graphene can be unintentionally $p$-doped by etchants such as ammonium persulfate or iron chloride, leading to the low sheet resistance before additional doping. In the case of the roll-to-roll method, the sheet resistance after HNO$_3$ doping is decreased from 272 to 108 Ohm/sq ($\approx 59\%$ decrease). We tested various doping agent that have been used for carbon nanotubes (Ref. 25 in the main text), and found that HNO$_3$ is suitable for practical applications.
K. High voltage $I$-$V$ characteristics of graphene films

Fig S11. High voltage $I$-$V$ characteristics of a monolayer graphene film transferred on a PET by a roll-to-roll method. The non-linear $I$-$V$ characteristics of the graphene film on a PET substrate is not observed between $V_{SD}=25$ to $25$ V. If $V_{SD} > 30$ V, The devices tend to breakdown before reaching the saturation of current probably due to deformation of PET ($T_{g} = -150^\circ C$) substrates by heat dissipated from the contact. In the case of SiO$_2$/Si substrates, the graphene film withstands $V_{SD}=50$ to $50$ V. Considering the practical operation voltages of commercial electronic devices, $V_{SD} < 20$ V, the graphene electrode is expected to be reliable for most of high-voltage applications including LCD and OLED.

L. Structures of graphene-based touch screen devices

Fig. S12. Structure and working principle of graphene-based touch screen devices. The protective conducting layer was not used in the actual experiment.