Supplementary Information

Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu-W bimetallic C–N coupling sites

Yilong Zhao,^{1#} Yunxuan Ding,^{2#} Wenlong Li,^{1,2} Chang Liu,¹ Yingzheng Li,¹ Ziqi Zhao,¹ Yu Shan,¹ Fei Li,¹

Licheng Sun,^{1,2,3*} and Fusheng Li^{1*}

¹State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116024 Dalian, China. ²Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 310024 Hangzhou, China.

³Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.

[#]These authors contributed equally: Yilong Zhao, Yunxuan Ding.

*Corresponding authors. Email: <u>sunlicheng@westlake.edu.cn;</u> fusheng@dlut.edu.cn

Table of Contents

Supplementary Methods	3
Physical characterisation	- 4
Electrochemical data and analytical methods	13
Stability analysis	35
Performance comparison	47
In situ characterization and mechanism analysis	48
Theoretical calculation of DFT	55
Supplementary References	60

Supplementary Methods

Chemicals. All chemicals and gases were purchased commercially unless otherwise stated. Ar (99.999%), CO₂ (99.999%), CO (99.999%), NO (99.9%), NO₂ (2000 ppm in Ar) and ¹³CO₂ (99.5%) were purchased from Dalian Special Gases Co. and Sigma-Aldrich. Na₂WO₄·2H₂O (99.5%), CuSO₄ (99.95%), KHCO₃ (99.7%), K₂CO₃ (99.99%), KNO₃ (99.0%), KNO₂ (97%), K₂HPO₄ (99%), KH₂PO₄ (99%), EDTA-Na₂ (99%), Na₂CO₃ (99.99%), hydrochloric acid (HCl,37% in H₂O) and hydroxylamine solution (NH₂OH, 50 wt.% in H₂O) were purchased from Aladdin. The reagents used for quantitative analysis include phosphoric acid (H₃PO₄, >85 wt.% in H₂O), sulfuric acid (H₂SO₄, 95%-98%), iron chloride (>99.9%), thiosemicarbazide (99%), sodium hypochlorite solution (active chlorine >10%), salicylic acid (99.5%), sodium citrate dihydrate (99.0%), k1⁵NO₃ (98%) and diacetylmonoxime (>98%) were produced by Sigma-Aldrich. Urease (~1 U/mg) was gained from Shanghai yuanye Bio-Technology Co., Ltd. Dimethyl sulfoxide (DMSO, ≥99.9%) and absolute ethyl alcohol were supplied by Innochem. All aqueous solutions were prepared with high-purity deionized water (Milli-Q, resistance 18 MΩ cm⁻¹).

Characterization. The morphology and structure of catalysts were investigated by scanning electron microscope (SU8220, HITACHI) and cryogenic transmission electron microscope (Glacios Cryo-TEM 200 kV, Thermo Fisher). The phase structures of the catalysts were obtained by X-ray smart diffractometer (Rigaku SmartLab 9KW) and Renishaw microscopic confocal Raman spectrometer (Thermo Fisher DXR Microscope) using a laser wavelength of 532 nm. Fourier transform infrared (FT-IR) spectra were acquired on a Thermo 6700 infrared spectrometer. The surface composition of the electrode films was investigated using X-ray photoelectron spectroscopy (XPS) on an ESCALAB Xi+ (Thermo Scientific[™]).

Supplementary Figures

Supplementary Figure 1 The (a) Raman spectrum and (b) FT-IR spectrum of CuWO₄ catalyst.

Supplementary Figure 2 XPS (a) O 1s and (b) survey spectra of CuWO₄ catalyst.

Supplementary Figure 3 HAADF and elemental mapping images of CuWO₄ catalyst.

Supplementary Figure 4 The triclinic CuWO₄ crystal structure.

Supplementary Figure 5 (a) XRD patterns, (b) Raman spectra and (c) FT-IR spectra of WO₃ and CuO catalysts.

Supplementary Figure 6 (a) XPS survey spectra, (b) Cu 2p and (c) O 1s of CuO catalyst, and (d) XPS survey spectra, (e) W 4f and (f) O 1s of WO₃ catalyst.

Supplementary Figure 7 SEM images of (a) CuO and (b) WO₃.

Supplementary Figure 8 TEM images, EDX energy spectrum, HAADF-STEM and elemental mappings images of CuO.

Supplementary Figure 9 TEM images, EDX energy spectrum, HAADF-STEM and elemental mappings images of WO₃.

Supplementary Figure 10 The digital images of the H-cell and H-cell with sampling ports for electrochemical measurements.

Supplementary Figure 11 Chrono-amperometry results of (a) $CuWO_4$, (b) CuO and (c) WO_3 in 0.1 M KNO₃ at the corresponding potentials.

Supplementary Figure 12 Absolute calibration of the diacetylmonoxime method for quantification of urea. (a) UV-Vis spectra of urea with various concentrations. (b) The calibration curve for urea.

Supplementary Figure 13 Urea quantification of different catalysts electrolysis in 0.1 M KNO₃ electrolyte with CO₂ feeding gas at the corresponding potential for 1 hour. (a) UV-Vis spectra of the electrolyte of CuWO₄ with diacetylmonoxime indicator. (b) Urea yield rate at different potentials for CuWO₄. (c) UV-Vis spectra of the electrolyte of CuO with diacetylmonoxime indicator. (d) Urea yield rate at different potentials for CuO. (e) UV-Vis spectra of the electrolyte of WO₃ with diacetylmonoxime indicator. (f) Urea yield rate at different potentials for WO₃.

Supplementary Figure 14 Absolute calibration of ion chromatography for quantification of nitrite ions. (a) The measurement data of nitrite ions with various concentrations. (b) The corresponding standard curve of nitrite ions.

Supplementary Figure 15 Measurement data of nitrite ions in 0.1 M KNO3 electrolyte by ion chromatography.

Supplementary Figure 16 Nitrite ions quantification of different catalysts electrolysis in 0.1 M KNO₃ electrolyte with CO₂ feeding gas at the corresponding potential for 1 hour. (a) The measurement datas of CuWO₄ electrolytes by ion chromatography. (b) Nitrite ion concentration at different potentials for CuWO₄. (c) The measurement datas of CuO electrolytes by ion chromatography. (d) Nitrite ion concentration at different potential at different potentials for CuO. (e) The measurement datas of WO₃ electrolytes by ion chromatography. (f) Nitrite ion concentration at different potentials for WO₃.

Supplementary Figure 17 Effect of co-existing nitrite on urea quantification by DAMO-TSC method. (a) UV-Vis spectra of nitrite standard solutions without urea by DAMO-TSC method. (b) UV-Vis spectra of nitrite standard solutions with 2.5 ppm urea by DAMO-TSC method.

Supplementary Figure 18 Absolute calibration of the indophenol blue method for quantification of NH_3 estimated by NH_4^+ ion concentration. (a) UV-Vis spectra of NH_3 with various concentrations. (b) The calibration curve for NH_3 .

Supplementary Figure 19 Absolute calibration of the ion chromatography method for quantification of NH_4^+ ion concentration. (a) The chromatographic curves of NH_4^+ with various concentrations. (b) The calibration curve for NH_4^+ .

Supplementary Figure 20 Chromatographic curves (a, b) and UV-vis absorption spectra (c) of urea quantified by urease decomposition method for CuWO₄ based on ion chromatography and the indophenol blue method.

Supplementary Figure 21 (a) NH_3 yield rates of CuWO₄ via ion chromatography and the indophenol blue method. (b) Urea yield rates of CuWO₄ quantified by urease decomposition method based on ion chromatography and the indophenol blue method. (c) Faradaic efficiency of different products for CuWO₄ at different applied potentials.

Supplementary Figure 22 Chromatographic curves (a, b) and UV-vis absorption spectra (c) of urea quantified by urease decomposition method for CuO based on ion chromatography and the indophenol blue method.

Supplementary Figure 23 (a) NH₃ yield rates of CuO via ion chromatography and the indophenol blue method. (b) Urea yield rates of CuO quantified by urease decomposition method based on ion chromatography and the indophenol blue method. (c) Faradaic efficiency of different products for CuO at different applied potentials.

Supplementary Figure 24 Chromatographic curves (a, b) and UV-vis absorption spectra (c) of urea quantified by urease decomposition method for WO_3 based on ion chromatography and the indophenol blue method.

Supplementary Figure 25 (a) NH₃ yield rates of WO₃ via ion chromatography and the indophenol blue method. (b) Urea yield rates of WO₃ quantified by urease decomposition method based on ion chromatography and the indophenol blue method. (c) Faradaic efficiency of different products for WO₃ at different applied potentials.

Supplementary Figure 26 Determination of the ECSA for the CuWO₄/CFP, CuO/CFP and WO₃/CFP electrodes. CV curves of (a) CuWO₄/CFP, (c) CuO/CFP and (e) WO₃/CFP in 0.1 M KNO₃ with different scan rates at selected potential range. The corresponding capacitance $\Delta j(|j_{charge}-j_{discharge}|)$ of (b) CuWO₄/CFP, (d) CuO/CFP and (f) WO₃/CFP electrodes versus the scan rates. The scanning potential range is from 0.3 V to 0.42 V vs RHE. ECSA of electrode was obtained from CV curves, in details, by plotting the Δj ($|j_{charge}-j_{discharge}|$) at Faradaic silence potential range against the scan rates, the linear slope is obtained, which is a positive correlation with the double-layer capacitance (CdI), and been used to represent the corresponding ECSA.

Supplementary Figure 27 (a) The LSV curves and (b) urea yield normalized by ECSA of CuWO₄/CFP, CuO/CFP and WO₃/CFP electrodes.

Supplementary Figure 28 NMR spectra and calibration curves for quantification of ¹⁵N-urea and ¹⁵NH₄⁺. (a) NMR spectra of ¹⁵N-urea with various concentrations. (b) The calibration curves for ¹⁵N-urea. (c) NMR spectra of ¹⁵NH₄⁺ with various concentrations. (d) The calibration curves for ¹⁵NH₄⁺.

Supplementary Figure 29 (a) Chrono-amperometry results of CuWO₄ in 0.1 M K¹⁵NO₃ with CO₂ feeding at the corresponding potentials. (b) ¹H NMR data of isotope calibration experiment in 0.1 M K¹⁵NO₃ with CO₂ bubbling (20 mL min⁻¹) at different applied potentials. (c) ¹⁵NH₃ yield rates via integrated peak area from NMR data.

Supplementary Figure 30 NMR spectroscopy results of CuWO₄ in 0.1 M KNO₃ with CO₂ at -0.2 V versus RHE, CuWO₄ in 0.1 M K¹⁵NO₃ with CO₂ at -0.2 V versus RHE and other control experiments.

Supplementary Figure 31 CuWO₄ electrolysis in 0.1 M KNO₃ electrolyte with Ar bubbling at the corresponding potential for 1 hour. (a) Chrono-amperometry results of CuWO₄ at the corresponding potentials. (b) UV-Vis spectra of the electrolyte before and after urease decomposition with indophenol indicator. (c) NH₃ yield rate at different potentials for CuWO₄. (d) Urea yield rate on CuWO₄ at different applied potentials. (e) Faradaic efficiency of different products for CuWO₄ at different applied potentials.

Supplementary Figure 32 Chrono-amperometry results of CuWO₄ at -0.2 V versus RHE in 0.1 M KNO₃ with (a) 5 mL min⁻¹, (b) 10 mL min⁻¹ and (c) 30 mL min⁻¹ CO₂ feeding flow rates. (d) Urea yield rates for CuWO₄ at -0.2 V versus RHE in 0.1 M KNO₃ with different CO₂ feeding flow rates. (e) Urea FEs for CuWO₄ with different CO₂ feeding flow rates.

Supplementary Figure 33 (a) Chrono-amperometry results and (b) urea yield rates of CuWO₄ at -0.2 V versus RHE in different concentrations of KNO₃ electrolyte with CO₂ bubbling (20 mL min⁻¹).

Supplementary Figure 34 (a) ¹H NMR spectra of ¹⁴N-urea with various concentrations. (b) The calibration curves for ¹⁴N-urea.

Supplementary Figure 35. (a, c, e) three long-term repeated tests of urea synthesis during 20 h of electrolysis at -0.2 V vs. RHE in 0.1 M KNO₃ with CO₂ bubbling (20 mL min⁻¹) and (b, d, f) ¹H NMR data of corresponding electrolyte.

Supplementary Figure 36 (a,b) SEM images of CuWO₄/CP electrode before catalysis reaction. (c,d) SEM images of CuWO₄/CP electrode after catalysis reaction.

Supplementary Figure 37 Raman spectra of CuWO₄/CP electrodes before and after catalysis reaction.

Supplementary Figure 38 TEM images of CuWO₄ after catalysis reaction.

Supplementary Figure 39 XPS spectra of CuWO₄ before and after catalysis reaction (in Ar protection or in the air). XPS spectra of Cu 2p (a) and W 4f (b).

Supplementary Figure 40 In-situ Raman spectra of CuWO₄/CP electrodes in 0.1 M KNO₃ electrolyte with CO₂ feeding gas at different operating potentials.

Supplementary Figure 41 In-situ Raman spectra of WO₃/CP electrodes in 0.1 M KNO₃ electrolyte with CO₂ feeding gas at different operating potentials.

Supplementary Figure 42 In-situ Raman spectra of CuO/CP electrodes in 0.1 M KNO₃ electrolyte with CO₂

feeding gas at different operating potentials.

Supplementary Figure 43 Cu 2p XPS spectra of CuO before and after catalysis reaction (in Ar protection or in the air).

Catalyst	Electrolyte	Reactants	Operating potential (V vs. RHE)	FE (%)	Partial current density (mA cm ⁻²)	Quantitative methods	Ref.
CuWO ₄	0.1 M KNO ₃	NO ₃ ⁻ , CO ₂	-0.2	70.9	0.95	Colorimetric method	This
CuWO ₄	0.1 M K ¹⁵ NO ₃	¹⁵ NO₃⁻, CO₂	-0.2	70.1	0.95	NMR	work
In(OH)₃	0.1 M KNO₃	NO₃⁻, CO₂	-0.6	53	0.3	Colorimetric method	[1]
V ₀ -InOOH	0.1 M KNO3	NO₃⁻, CO₂	-0.5	51	0.9	Colorimetric method	[2]
Cu-GS	0.1 M KHCO ₃ + 0.1 M KNO ₃	NO₃⁻, CO₂	-0.9	28	27	Colorimetric method	[3]
Cu@Zn Nanowires	0.2 M KHCO ₃	NO₃⁻, CO₂	-1.02	9.28	3.13	Liquid chromatography	[4]
AuPd nanoalloy	0.075 M KHCO ₃ + 0.025 M KNO ₃	NO₃⁻, CO₂	-0.4	15.6	-	Colorimetric method	[5]
Te-doped Pd	0.1 M KHCO3 + 0.01 M KNO2	NO₂⁻, CO₂	-1.1	12.2	-	Colorimetric method	[6]
ZnO-V _o	0.2 M NaHCO ₃ + 0.1 M NaNO ₂	NO₂⁻, CO₂	-0.79	23.2	5.3	Liquid chromatography	[7]
Zn	0.2 M KHCO ₃ + 0.02 M KNO ₃	NO₃⁻, CO₂	-1.3	35	_	Colorimetric method	[8]
Ni-Pc	0.2 M KHCO ₃ + 0.02 M KNO ₂	NO₂⁻, CO₂	-1.1	41	-	Colorimetric method	[9]
TiO₂/Nafio n	0.1 M KNO ₃	NO₃⁻, CO₂	-0.5	40	0.8	Colorimetric method	[10]
TiO₂ nanotubes -V₀/Cu	0.2 M KHCO3 + 0.02 M KNO2	NO2 [−] , CO2	-0.4	43.1	3.2	Colorimetric method	[11]
Cd	0.2 M KHCO3 + 0.02 M KNO3	NO₃⁻, CO₂	-0.6	55	-	Colorimetric method	[12]
AuCu SANFs	0.5 M KHCO3 + 0.02 M KNO2	NO2 [−] , CO2	-1.0	24.7	20	Colorimetric method	[13]
Zn foil	0.2 M KHCO ₃	NO, CO ₂	-0.92	11.2	40	Liquid chromatography	[14]
B-FeNi- DASC	0.1 M KHCO3 + 0.05 M KNO3	NO₃⁻, CO₂	-1.5	17.8	43	Colorimetric method	[15]
Vo-CeO ₂	0.1 M KHCO3 + 0.05 M KNO3	NO₃⁻, CO₂	-1.6	4.8	40	Colorimetric method	[16]

Supplementary Table 1 Electrocatalytic performance of coupling CO₂ and oxynitride to urea performance on heterogeneous catalytic systems in published works.

Supplementary Figure 44 Images of the experimental set-up and cell for operando Raman test.

Supplementary Figure 45 Operando Raman spectra of CuO/CP electrodes in 0.1 M KNO₃ with CO₂ bubbling at different applied potentials.

Supplementary Figure 46 Operando Raman spectra of WO₃/CP electrodes in 0.1 M KNO₃ with CO₂ bubbling at different applied potentials.

Supplementary Figure 47 The m/z signals of 28 (a) and 44 (b) in CO-temperature programmed desorption (TPD) of CuWO₄, CuO and WO₃.

Supplementary Figure 48 Photograph of (a) differential electrochemical mass spectrometer and (b) DEMS

cell.

Supplementary Figure 49 Online DEMS of (a) WO₄ and (b) CuO in 0.1 M KNO₃ with saturated CO₂ at -0.2

V versus RHE.

Supplementary Table 2 The list of controlled experiments carried out to elucidate the mechanism of urea production.

Catalysts	C source	N source	V versus RHE	Urea?	Electrolyte
CuWO₄	CO ₂	NO₃⁻	-0.2	Yes	0.1 M KNO3
	CO₃⁻	NO₃ [−]	-0.2	Yes	0.05 M KCO3 + 0.1 M KNO3
	HCO3 [−]	NO₃ [−]	-0.2	Yes	0.05 M KHCO ₃ + 0.1 M KNO ₃
	со	NO₃ [−]	-0.2	Yes	0.1 M KNO3
	НСНО	NO₃ [−]	0.0 to -0.4	NO	0.05 M HCHO + 0.1 M KNO ₃
	CH₃OH	NO₃ [−]	0.0 to -0.4	NO	0.05 M CH ₃ OH + 0.1 M KNO ₃
	CO ₂	NO ₂	-0.2	Yes	0.1 M KHCO3
	CO ₂	NO₂ [−]	0.0 to -0.4	NO	0.1 M KNO ₂
	CO ₂	NO	0.0 to -0.4	NO	0.1 M KHCO ₃
	CO ₂	NH ₂ OH	0.0 to -0.4	NO	0.05 M NH ₂ OH + 0.1 M KHCO ₃ (adjust the pH to 7)
	CO ₂	NH ₃	0.0 to -0.4	NO	0.05 M NH ₄ Cl + 0.1 M KHCO ₃ (adjust the pH to 7)
	СО	NO ₂	-0.2	Yes	0.1 M phosphate buffered solution (pH=6.8)

Supplementary Figure 50 The construction of four possible CuWO₄ (111) surfaces and their surface energy. Red, orange and cyan balls represent O, Cu and W, respectively.

Supplementary Discussion

Calculation of surface energy

For the four different CuWO₄ (111) surfaces, the surface energy (E_{surf}) is calculated as

$$E_{surf} = \frac{1}{2A} (E_{slab} - N * E_{bulk}) \tag{1}$$

where E_{slab} is the total energy of a surface periodic slab, E_{bulk} refers to the energy per atom of the bulk metal, N denotes the number of atoms in the surface slab, and A is the cross-sectional area of the surface slab unit cell.

As shown in Figure **Supplementary Fig. 50**, the **slab 1** has the lowest surface energy (71.68 meV/Å²), implying its geometry structure to be the most stable one among those different CuWO₄ (111) surfaces.

Supplementary Figure 51 The possible reaction mechanism, intermediate states with the lowest energy and an enlarged version of the CuWO₄ (111) facet. Gray, blue, red, orange, cyan, and yellow balls represent C, N, lattice O, Cu, W, and adsorbate O, respectively.

Supplementary Figure 52. Free-energy diagram for CO hydrogenation and C–N coupling process.

Supplementary Figure 53 The planar-averaged electron density difference $\Delta \rho$ and the charge density difference of (a) the *CO and (b) *NO₂ adsorbed on the CuWO₄ (111) surface. The iso-value is 0.002 e/Å³. Cyan and yellow represent a depletion and an accumulation of electrons, respectively.

Reaction coordinate

Supplementary Figure 54. Free-energy diagram for the second C–N bond formed.

Supplementary References

- 1. C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan, M. Chen, Y. Kong, C. Lee, D. Liu, S. Li, J. Liu, L. Song, G. Chen, Q. Yan and G. Yu, *Nat. Sustain.* 2021, *4*, 868-876.
- C. Lv, C. Lee, L. Zhong, H. Liu, J. Liu, L. Yang, C. Yan, W. Yu, H. H. Hng, Z. Qi, L. Song, S. Li, K. P. Loh, Q. Yan and G. Yu, ACS Nano 2022, 16, 8213-8222.
- J. Leverett, T. Tran-Phu, J. A. Yuwono, P. Kumar, C. Kim, Q. Zhai, C. Han, J. Qu, J. Cairney, A. N. Simonov, R. K. Hocking, L. Dai, R. Daiyan and R. Amal, *Adv. Energy Mater.* 2022, *12*, 2201500.
- 4. N. Meng, X. Ma, C. Wang, Y. Wang, R. Yang, J. Shao, Y. Huang, Y. Xu, B. Zhang and Y. Yu, ACS Nano, 2022, 16, 9095-9104.
- 5. H. Wang, Y. Jiang, S. Li, F. Gou, X. Liu, Y. Jiang, W. Luo, W. Shen, R. He and M. Li, *Appl. Catal. B: Environ.* 2022, 318, 121819.
- 6. Y. Feng, H. Yang, Y. Zhang, X. Huang, L. Li, T. Cheng and Q. Shao, *Nano Lett.* 2020, 20, 8282-8289.
- 7. N. Meng, Y. Huang, Y. Liu, Y. Yu and B. Zhang, Cell Rep. Phys. Sci. 2021, 2, 100378.
- 8. M. Shibata, K. Yoshida and N. Furuya, *J. Electrochem. Soc.* **1998**, *145*, 2348-2353.
- 9. M. Shibata and N. Furuya, *J. Electroanal. Chem.* **2001**, 507, 177-184.
- 10. D. Saravanakumar, J. Song, S. Lee, N. H. Hur and W. Shin, *ChemSusChem* 2017, 10, 3999-4003.
- 11. N. Cao, Y. Quan, A. Guan, C. Yang, Y. Ji, L. Zhang and G. Zheng, J. Colloid Interf. Sci. 2020, 577, 109-114.
- 12. M. Shibata, K. Yoshida and N. Furuya, J. Electrochem. Soc. 1998, 145, 595-600.
- 13. S. Liu, S. Yin, Z. Wang, Y. Xu, X. Li, L. Wang and H. Wang, Cell Rep. Phys. Sci. 2022, 3, 100869.
- 14. Y. Huang, R. Yang, C. Wang, N. Meng, Y. Shi, Y. Yu and B. Zhang, ACS Energy Lett. 2022, 7, 284-291.
- 15. X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu, X. Wei, N. He, C. Xie, W. Chen, J. Zheng, P. Chen, S. P. Jiang, Y. Li, Q. Liu and S. Wang, *Nat. Commun.* **2022**, *13*, 5337.
- X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie, D. Wang, M. Qiu, N. He, P. Zhou, W. Chen, J. Cheng, H. Lin, J. Jia, X.-Z. Fu, S. Wang, J. Am. Chem. Soc. 2022, 144, 11530-11535.